Hydrodynamic determinants of cell necrosis and molecular delivery produced by pulsed laser microbeam irradiation of adherent cells.
نویسندگان
چکیده
Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180-1100 ps and pulse energies of 0.5-10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of pulse energy and pulse duration. These results provide a mechanistic foundation and design strategy applicable to a broad range of laser-based cellular manipulation procedures.
منابع مشابه
Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects.
Time-resolved imaging was used to examine the use of pulsed laser microbeam irradiation to produce cell lysis. Lysis was accomplished through the delivery of 6 ns, lambda=532 nm laser pulses via a 40x, 0.8 NA objective to a location 10 microm above confluent monolayers of PtK2 cells. The process dynamics were examined at cell surface densities of 600 and 1000 cells/mm2 and pulse energies corres...
متن کاملBiophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery.
Cell lysis and molecular delivery in confluent monolayers of PtK(2) cells are achieved by the delivery of 6 ns, lambda = 532 nm laser pulses via a 40x, 0.8 NA microscope objective. With increasing distance from the point of laser focus we find regions of (a) immediate cell lysis; (b) necrotic cells that detach during the fluorescence assays; (c) permeabilized cells sufficient to facilitate the ...
متن کاملMechanisms of pulsed laser microbeam release of SU-8 polymer "micropallets" for the collection and separation of adherent cells.
The release of individual polymer micropallets from glass substrates using highly focused laser pulses has been demonstrated for the efficient separation, collection, and expansion of single, adherent cells from a heterogeneous cell population. Here, we use fast-frame photography to examine the mechanism and dynamics of micropallet release produced by pulsed laser microbeam irradiation at lambd...
متن کاملExamination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging.
We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at lambda = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavit...
متن کاملKinetics of cell death triggered photothermally using folate-conjugated gold nanoparticles and various laser irradiation conditions in cancer cells
Introduction: In this study, we explore in detail cell-specific targeting efficacy of nano-photo-thermal therapy (NPTT) method and the resulting responses that are induced by variable laser intensities and exposure times in cancer cells to induce selective apoptosis. We delineate the synthesis of a high-yielding synthetic F-AuNPs by tailoring the surface of gold nanoparticles ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 105 9 شماره
صفحات -
تاریخ انتشار 2013